Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Mestre, Julián; Wirth, Anthony (Ed.)Counting the number of homomorphisms of a pattern graph H in a large input graph G is a fundamental problem in computer science. In many applications in databases, bioinformatics, and network science, we need more than just the total count. We wish to compute, for each vertex v of G, the number of H-homomorphisms that v participates in. This problem is referred to as homomorphism orbit counting, as it relates to the orbits of vertices of H under its automorphisms. Given the need for fast algorithms for this problem, we study when near-linear time algorithms are possible. A natural restriction is to assume that the input graph G has bounded degeneracy, a commonly observed property in modern massive networks. Can we characterize the patterns H for which homomorphism orbit counting can be done in near-linear time? We discover a dichotomy theorem that resolves this problem. For pattern H, let 𝓁 be the length of the longest induced path between any two vertices of the same orbit (under the automorphisms of H). If 𝓁 ≤ 5, then H-homomorphism orbit counting can be done in near-linear time for bounded degeneracy graphs. If 𝓁 > 5, then (assuming fine-grained complexity conjectures) there is no near-linear time algorithm for this problem. We build on existing work on dichotomy theorems for counting the total H-homomorphism count. Surprisingly, there exist (and we characterize) patterns H for which the total homomorphism count can be computed in near-linear time, but the corresponding orbit counting problem cannot be done in near-linear time.more » « less
- 
            Mestre, Julián; Wirth, Anthony (Ed.)In his 2018 paper, Herlihy introduced an atomic protocol for multi-party asset swaps across different blockchains. Practical implementation of this protocol is hampered by its intricacy and computational complexity, as it relies on elaborate smart contracts for asset transfers, and specifying the protocol’s steps on a given digraph requires solving an NP-hard problem of computing longest paths. Herlihy left open the question whether there is a simple and efficient protocol for cross-chain asset swaps in arbitrary digraphs. Addressing this, we study HTLC-based protocols, in which all asset transfers are implemented with standard hashed time-lock smart contracts (HTLCs). Our main contribution is a full characterization of swap digraphs that have such protocols, in terms of so-called reuniclus graphs. We give an atomic HTLC-based protocol for reuniclus graphs. Our protocol is simple and efficient. We then prove that non-reuniclus graphs do not have atomic HTLC-based swap protocols.more » « less
- 
            Mestre, Julián; Wirth, Anthony (Ed.)We consider the classical single-source shortest path problem in directed weighted graphs. D. Eppstein proved recently an Ω(n³) lower bound for oblivious algorithms that use relaxation operations to update the tentative distances from the source vertex. We generalize this result by extending this Ω(n³) lower bound to adaptive algorithms that, in addition to relaxations, can perform queries involving some simple types of linear inequalities between edge weights and tentative distances. Our model captures as a special case the operations on tentative distances used by Dijkstra’s algorithm.more » « less
- 
            Mestre, Julián; Wirth, Anthony (Ed.)For a set of red and blue points in the plane, a minimum bichromatic spanning tree (MinBST) is a shortest spanning tree of the points such that every edge has a red and a blue endpoint. A MinBST can be computed in O(n log n) time where n is the number of points. In contrast to the standard Euclidean MST, which is always plane (noncrossing), a MinBST may have edges that cross each other. However, we prove that a MinBST is quasi-plane, that is, it does not contain three pairwise crossing edges, and we determine the maximum number of crossings. Moreover, we study the problem of finding a minimum plane bichromatic spanning tree (MinPBST) which is a shortest bichromatic spanning tree with pairwise noncrossing edges. This problem is known to be NP-hard. The previous best approximation algorithm, due to Borgelt et al. (2009), has a ratio of O(√n). It is also known that the optimum solution can be computed in polynomial time in some special cases, for instance, when the points are in convex position, collinear, semi-collinear, or when one color class has constant size. We present an O(log n)-factor approximation algorithm for the general case.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
